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Analytical solution of flow coefficients for a uniformly
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Abstract

A general theoretical model is introduced to calculate flow distribution and pressure drop in a channel with porous wall. Analytical
solution of nonlinear ordinary differential equations, based on the varying flow coefficients, was obtained, and comparison was made with
the solution with flow coefficients. Predicted flow distribution agrees well with experimental data. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Uniform mixing between species in a reactor depends on
flow distribution. Hence, flow distributors are extensively
encountered in many chemical processes. One of the most
commonly used devices employs a porous pipe with con-
stant cross-sectional area, as shown in Fig. 1. In this pipe,
some fluid flows through the holes in the pipe wall and the
remainder flows downstream at decreasing flow rates. The
static pressure in such a pipe varies along the length due to
two causes: (a) the friction of the fluid against the internal
surface of the main channel makes the pressure fall in the
flow direction; (b) the momentum of the main fluid stream
flowing into a manifold tends to carry the fluid toward the
closed end, where an excess pressure is produced. Therefore,
it is possible to obtain a uniform pressure along the pipe
axis by suitable adjustment of the flow parameters or good
design so that the pressure recovery due to flow branching
balances the pressure losses due to friction. However, the
flow, even in this simple pipe distributor, is also compli-
cated; the flow strongly depends on the geometry of the de-
vice, such as opening, spacing, dimension, etc. It would be
too much effort to test the effect of all the geometric shapes
of distributor, so theoretical simulation is a better approach.
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The analysis of the performance of a porous pipe is
traditionally based on the Bernoulli theorem, the energy
theorem, or the conservation of momentum theorem. The
difficulty with applying a Bernoulli equation to the varying
mass process is identifying a relevant streamline to con-
serve energy and estimate frictional losses. In addition, be-
cause the lower energy fluid in the boundary layer branches
through the holes the higher energy fluid in the pipe cen-
ter stays in the pipe. So the average specific energies in a
cross-section will be higher in the downstream than in the
upstream. If an energy balance is based on the average value
of the cross-section, these higher specific energies cannot
be corrected and lead to an error. Hence, according to the
First Law of Thermodynamics, when the specific mechan-
ical energies are multiplied by the relevant mass flow rate
terms, the mechanical energy after branching for the mani-
fold can apparently be greater than the approaching energy.
Alternatively, if the specific energy equation is used on the
flow streamlines, there will be an equation corresponding
to every dividing flow streamline. Thus, there will be many
equations for a manifold system and the energy theorem be-
comes rather complicated. Recent researchers have avoided
this problem by applying a momentum equation along the
porous pipe [1,2]. The advantage of applying the momen-
tum balance is that one does not need to know detailed flow
patterns and the flow process can be simplified. Any errors
due to simplification can be corrected with a pressure recov-
ery factor and friction factor. However, for the past several
decades an analysis has been based on the assumption of
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Nomenclature

d lateral outlet diameter
D the diameter of pipe distributor
E the ratio of distributor length to diameter
Eux0 Euler number (= (px − p0)/ρw

2
0)

F0 cross-sectional area of pipe distributor
F1 cross-sectional area of a hole
H lateral head loss coefficient
k pressure recovery factor
L active length of pipe distributor
n the number of lateral outlets
p static pressure in the distributor
pc ambient pressure
P̄ dimensionless pressure (p/ρw2

0)

s spacing distance
u hole velocity
w axial velocity in the distributor
wc axial component of the pipe

distributor velocity
wx axial velocity at point x
x axial coordinate
x̄ dimensionless axial coordinate (x/L)

Greek symbols
α, β coefficients
ρ fluid density
λ friction factor
τw wall shear stress
ζ correction factor

Subscripts and superscripts
0 beginning of distributor
′ differentiation

the constant friction and pressure recovery factors. In prac-
tice, the two factors would vary along the manifold because
of varying flow velocity. Therefore there are limitations to
apply the constant factors to the momentum equation. Anal-
ysis using the constant factors would result in two problems:
(a) a large error, and (b) difficulty in analyzing flow mech-
anisms and model behavior, because the solution includes
the pressure recovery factor and friction factor, both being
dependent on the flow rate and manifold structure. Most
researchers assumed the pressure recovery factor is constant
when solving the momentum equations. Some researchers

Fig. 1. Flow schematics for diving flow.

have recognized the problems. Haerter [3] assumed that the
pressure recovery factor decreases linearly from the entrance
value to an assumed value, 0.2, at the closed end. However,
the assumption is unreasonable because the pressure profile
is nonlinear along the manifold and the value at the closed
end is not equal to 0.2. Bajora [1] recognized variation of
friction factor with Reynolds number according to a power
law, but he did not obtain the solution based on the power
law. In practice, the effects of friction were considered neg-
ligible for a short manifold. Also, Bassiouny and Martin [2]
neglected friction loss but they also used a constant friction
factor and a constant pressure recovery factor. Their models
were applied only for a short manifold. A study by Shen [4]
showed that even for short manifolds the friction effects on
the flow distribution are not negligible. But Shen also used
a constant friction factor and a constant pressure factor.

For these reasons, it is desirable to investigate the possi-
bility of obtaining a solution to the momentum equation for
manifold flow under the condition where the factors vary
along the manifold axis. In this paper the widely scattered
values of flow coefficients for different system geometries
have been systematically analyzed. A generalized analyti-
cal method for varying flow coefficients is given for both a
short and a long manifold.

2. Analytical model

Fig. 1 shows the schematic of a manifold pipe. The
development of our theoretical flow model is based on the
following assumptions:

1. the ambient pressure does not vary;
2. the manifold pipe is of constant cross-sectional area and

has equally spaced holes of uniform size at a right angle;
3. based on (a) and (b), a uniform discharge per unit length

depends on a uniform static pressure along the length of
the distributor.

Consider a section of the pipe distributor near one of the
branching outlets as shown in Fig. 2. The hole part can be
regarded in all practical cases as a quasi-continuous system.
Therefore, equations for the dividing flow configuration are
given as follows:

Momentum balance

1

ρ

dp

dx
+ λ

2D
w2 + 2w

dw

dx
+ F1n

F0L
uwc = 0 (1)

Fig. 2. Control volume for branch point.
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Mass balance

u = −F0L

F1n

dw

dx
(2)

Lateral discharge

p − pc = Hρ
u2

2
(3)

A detailed derivation process is given in [1,2]. wc stands
for the axial velocity component of the fluid in the distribu-
tor, which will be branched off through the holes. It can be
smaller or larger than w, depending on the dimension of the
distributor and the location of the holes. If wc is expressed
as a fraction of w, namely wc = (2 − 2k)w, and Eq. (2) and
wc are substituted into Eq. (1), one obtains

1

ρ

dp

dx
+ λ

2D
w2 + 2kw

dw

dx
= 0 (4)

Generally, there are two approaches to solve this flow
distribution problem.

The first approach requires the design or adjustment of the
side openings to establish prescribed flow conditions along
the distributor, usually a uniform outflow along the pipe
length. For a given pipe area and the desired distribution, the
mean velocity can be calculated at each station x or a linear
velocity distribution along the length of pipe. Eq. (4) can
then be integrated with constant k and λ to give the pressure
distribution along the pipe.

The second approach is to establish the flow and pres-
sure distributions for a given distributor configuration. This
involves the simultaneous solution of Eqs. (4) and (3). In
general it requires a computer. For a short pipe, where
friction losses can be neglected, analytical solutions are
possible.

Obviously, either approach involves the variation of k
and λ with the main velocity. No existing models consider
this problem. In this paper, solutions are given for varying
factors.

3. Flow coefficients

It has been shown that many of the existing experimental
flow factors are empirical and inconsistent [5]. Such fail-
ure results from a lack of understanding of the fundamental
phenomena. This study attempts to systematically analyze
the existing experiment data, and to obtain results that can
be used for calculation purposes.

3.1. Friction factors

The effect of the manifold structure on friction coefficient
is well known. However, the degree of such an effect has
not been fully studied. Unlike the data for a smooth pipe,
the value of friction factor for porous pipes or manifolds
varies widely. Generally, there are three explanations for the

friction coefficient of porous pipes. Firstly, some researchers
[6] recognized that rough peaks caused by small holes result
in an increase in wall friction factor. Secondly, Haerter [3]
assumed that the friction of a porous pipe is one third of the
friction loss for a smooth pipe. Davis’s experiments [7] show
that the flow friction factor decreases through a T-junction.
A series of T-junctions such as manifolds, decreases the
flow friction coefficient. Finally, Acrivos et al. [8] indicated
that friction factors computed from the pressure gradients
were in agreement with the well established relations for
smooth pipes; the effect of the branching flow on the wall
friction was not apparent, at least in the region within an
inch or two of the side port (note: s/d > 4 ∼ 8). Based on
more experimental data, Wang [9,10] indicated that there are
three ratios which affect the friction factors of porous pipes,
namely, the ratio of hole diameter to pipe diameter (d/D),
spacing length to hole diameter (s/d), and sum of the areas
of all holes to the cross-sectional area of pipe (nd2/4DL).
Wang [5] also summarized the friction factors for various
pipes as follows:

1. When d/D and nd2/4DL are small, and s/d is large, the
wall friction factor increases smaller since rough peaks
of small hole jets is small compared with the whole wall
friction factor. The wall shear stress in the nonporous
sections of a manifold is nearly the same as in a long,
straight pipe and so it can be predicted from existing data
on pipe friction.

2. When d/D and s/d are small, and nd2/4DL is large, the
effect of rough peaks of small hole jets becomes signifi-
cant. This increases the wall friction. On the other hand,
because of small d/D the effect of the sudden expansion
of flow passage due to branching on the flow boundary
layer is not obvious. Hence, the wall friction factor will
increase.

3. When d/D and nd2/4DL are large, and s/d is small, the
rough peaks do not occur, and branching flow results in an
sudden expanding flow passage. The flow boundary layer
could not be fully developed. The wall friction factor then
decreases.

According to the above analyses, a general expression can
be introduced for the friction factor:

λ = ζλ′ = ζf (Re) (5)

where λ′ is the smooth pipe coefficient, which is given by
Nikuradse’s experiments; ζ a correction factor. In the above
three cases ζ is greater than 1 for case 2, equal to 1 for case
1, and smaller than 1 for case 3.

The value of friction factor is affected by the pipe material
or surface finish. For pipes commonly used for the chemical
reactors ζ equals 1 corresponding to case 1. Hence, the
well-known expression [9] for the friction coefficient can be
introduced for porous pipes,

λ = 64

Re
for Re < 2200 (6)
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λ = 0.3164

Re0.25
for 2200 < Re < 105 (7)

λ = 0.0032 +
(

0.221

Re0.237

)
for Re > 105 (8)

3.2. The pressure recovery factor k

k in the theoretical model derivation is defined as the
correction factor for the loss of some axial momentum when
fluid is branched off through holes. A value of 1 for k implies
that the flow leaves the manifold at a right angle and repre-
sents the maximum possible static pressure recovery. Under
this interpretation it is possible to assemble the appropriate
equations and basic data into a program to compute k. k is
a function of the fluid velocity before and after the hole,
namely k = f (wi, wi+1). Analytically k represents a frac-
tion of the relative momentum difference (β�w2/w2), i.e.

k = α + β
�w2

w2
(9)

α is the pressure recovery factor through the first hole. α
and β depend on the geometry of the manifold and are in-
dependent of the properties of the working fluid. The main
geometrical dimension is the ratio of manifold length to
diameter (L/D). β is also dependent on the ratio of the sum
of all areas of holes to the pipe area. However, this repre-
sentation is semi-theoretical. The mathematical expression
is required for calculation.

3.2.1. The relative momentum difference
Because k varies linearly with the relative momentum

difference, a mathematical expression can be derived as
follows:

w2
i − w2

i+1

w2
i

= (wi + wi+1)(wi − wi+1)

w2
i

= 2wξ�w

w2
i

(10)

where wi + wi+1 = 2wξ is from the mean-value theorem.
Dividing both sides of Eq. (10) by �x, and taking the

limit when �x → 0 (note: both wi and wi+1 → w):

lim
�x→0

w2
i − w2

i+1

w2
i �x

= lim
�x→0

2wξ

w2
i

(
�w

�x

)
= −2w′

w
(11)

or(
w2
i − w2

i+1

w2
i

)
= −2

w′

w
(12)

Integrating (12) from 0 to x, one obtains

w2
i − w2

i+1

w2
i

=
∫ x

0
− 2w′

w
dx = −2 ln

w

w0
(13)

Finally, substituting Eq. (13) into (9), one obtains

k = α + 2β ln
w

w0
(14)

At the inlet end, x = 0 and k = α. That is to say, α is the
pressure recovery factor k0 of the first branch. At the closed
end, x = L and �w2/w2 = −1. Applying these boundary
conditions to Eq. (9), k = α−β. α−β is the increment of the
pressure recovery coefficient per unit length and β the pres-
sure recovery coefficient of the last branch. Obviously, this
representation is different from the rule-of-thumb formulas.
The present k representation gives a physical meaning for
the two constant factors, α and β. This shows the advantage
of the present analyses. Hence, using data of Haerter’s, we
can obtain the pressure recovery factor for the first branch,
α, for L/D = 1 ∼ 1000. Wang [8] give α ∼= 0.5, β ∼= 0.146
for L/D = 20 ∼ 30, and α ∼= 0.6, β ∼= 0.15 for L/D =
30 ∼ 40. Both are similar.

3.2.2. The main flow velocity
If the holes are of the same size and their distribution

along the length of the pipe is uniform, uniform fluid flow
through the holes requires that the rates of flow through the
pipe must vary linearly from a maximum at the inlet to zero
at the dead end, i.e.

w = a(x + b)

with the following boundary conditions:

x = 0, w = w0, x = L, w = 0

Substituting boundary conditions into the above equation,
one obtains

a = −w0

L
, b = −L (15)

Hence, w = w0 (1 − x/L).

4. Solution of equation

Now, we need to solve the varying mass momentum equa-
tion (4). In the derivation of Eq. (4), k and λ have not been
restricted to be constant quantities. Hence, Eq. (4) is also
suitable for varying k and λ along a pipe manifold. The
flow coefficient expressions have been derived above. Fortu-
nately, the design or adjustment of the distributor in chemi-
cal engineering requires usually a uniform outflow along the
pipe length. Hence, the linear distribution of velocity can be
been assumed, and the set of equations is closed.

Inserting Eqs. (5) and (14) into Eq. (4) gives

1

ρ

dp

dx
+ ζf (Re)

2D
w2 +

(
α + 2β ln

w

w0

)
dw2

dx
= 0 (16)

Inserting Eq. (15), one obtains

1

ρ

dp

dx
+ ζf (Re)

2D
w2

0

(
1 − x

L

)2 + w2
0

[
α + 2β ln

(
1 − x

L

)]

× d(1 − x/L)2

dx
= 0 (17)
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The friction factor (λ) is dependent on the flow region
and this is represented by Eqs. (6)–(8). Integrating Eq. (17)
from 0 to x, we have the following solution for the three
flow regions.

1. for Re ≤ 2200

Eux0 = α[1 − (1 − x̄)2] − 16vL

w0D2
[1 − (1 − x̄)2]

−2β

[
(1 − x̄)2 ln(1 − x̄) − 1

2
x̄(x̄ − 2)

]
(18)

or

Eux0 =
(
α − 16E

Re0

)
[1 − (1 − x̄)2]

−2β

[
(1 − x̄)2 ln(1 − x̄) + 1

2
x̄(2 − x̄)

]
(19)

Eux0|x→0 = α − 16E

Re0
− β

where Eux0 = (px−p0)/ρw
2
0, x̄ = x/L, and E = L/D.

2. for 2200 < Re < 105

Eux0 = α[1 − (1 − x̄)2] − 0.058E

Re0.25
0

[1 − (1 − x̄)2.75]

−2β

[
(1 − x̄)2 ln(1 − x̄) − 1

2
x̄(x̄ − 2)

]
(20)

Eux0|x→0 = α − 0.058E

Re0.25
0

− β

3. for Re ≥ 105

Eux0 = α[1 − (1 − x̄)2] − 0.0032E

6
[1 − (1 − x̄)3]

− 0.04E

Re0.237
0

[1 − (1 − x̄)2.763]

−2β

[
(1 − x̄)2 ln(1 − x̄) − 1

2
x̄(x̄ − 2)

]
(21)

Eux0|x→0 = α − 0.0032E

6
− 0.04E

Re0.237
0

− β

The above solutions are applicable to a variable friction
factor for different Re regions. To compare with constant
factor solution Eq. (19) for Re less than 2200 is written as
follows:

Eux0 =
{
α[1 − (1 − x̄)2] − 2β

×
[
(1 − x̄)2 ln (1 − x̄) − 1

2
x̄ (x̄ − 2)

]}

−λ0E

6
[1 − (1 − x̄)3]

3(2 − x̄)

2(1 + x̄2)
(22)

where λ0 = 64/Re0.

On the other hand, the constant factor solution of Eq. (4)
is from [11]

Eux0 = k[1 − (1 − x̄)2] − Eλ

6
[1 − (1 − x̄)3] (23)

If we compare the two terms on the right-hand side of
Eqs. (22) and (23) the first term represents momentum effect,
and the second term measures friction loss. In Eq. (22) the
first term has a corrective part, 2β[(1 − x̄)2 ln(1 − x̄) −
( 1

2 )x̄(x̄−2)], which varies as x̄. At x̄ = 0, it equals 2β, and
at x̄ = 1, it is β. When the corrective part vanishes, the first
term becomes the constant factor solution of Eq. (23). The
second term also has a corrective part, 3(2 − x̄)/2(1 + x̄2),
which also varies with x̄. When the corrective part equals 1,
λ becomes the constant form of Eq. (23). Obviously, when
x̄ = 0, 3(2 − x̄)/2(1 + x̄2) = 3, that is, if Eq. (4) is solved
with the inlet end friction factor, λ0 , the friction loss will be
2
3 lower. When x̄ ≈ 1

2 , 3(2−x̄)/2(1+x̄2) ≈ 1 the calculated
value with the present λ will be similar. Furthermore, when
x̄ < 1

2 , 3(2 − x̄)/2(1 + x̄2) > 1, the calculated friction
loss with constant friction factor will be less; when x̄ >
1
2 , 3(2−x̄)/2(1+x̄2) < 1, the loss will be larger. Therefore,
because of varying corrective terms, the calculation with the
constant factor will give rise to errors. Similar analysis can
be made for 2200 < Re < 105 and Re > 105.

5. Results and discussion

Fig. 3 shows the effects of E/Re0 on Eux0 for the case of
Re ≤ 2200. The parameter, E/Re0, combines three impor-
tant characteristics of the manifold: namely, ratio of length
to diameter (L/D), the entrance dynamic energy, and friction
force. As E/Re0 increases, i.e. E increases or Re0 decreases,
Euler number, Eux0, decreases. The negative values indi-
cate that friction effects dominate. Obviously, it is possible
to alter the ratio of length to diameter or the entrance dy-
namic energy to improve system performance. A uniform

Fig. 3. Pressure profiles for distributor as varying E/Re0.
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Fig. 4. Comparison of analytical model with experimental data for
Re0 = 186 390.

pressure along the dividing flow manifold can be achieved
through appropriate adjustment of the flow parameters so
that the pressure recovery due to flow branching balances
the pressure losses due to friction.

To validate the analytical solutions, experiments were
performed using a pipe of 21 mm ID and 525 mm active
length with 21 side holes bored at intervals of 3 mm. The
static pressure in the main channel is observed by means of
multiple tube pressure taps. A detailed description of ex-
perimental facility and test conditions is given by Wang [9].
Figs. 4 and 5 present a comparison between the theoretical
results and experimental data.

Figs. 4 and 5 show that the solution using the constant
factors is larger than the experimental data at the closed
end. For a short pipe (E = 25), the effect of momentum
is dominant. In Eq. (22) there is a corrective part for the
momentum term, 2β[(1 − x̄)2 ln(1 − x̄) − ( 1

2 )x̄(x̄ − 2)],
which varies with x̄. That is to say, the momentum term in
the solution with varying factors is smaller than that using

Fig. 5. Comparison of analytical model with experimental data for
Re0 = 37 278.

the constant factors. Hence, Eqs. (19) and (20) agree well
with experimental data as a result of a friction corrective
term and a pressure recovery corrective term.

6. Conclusions

The present model can be used to describe the perfor-
mance of flow distributor or manifold systems in terms of
geometrical and varying parameters. A general approach is
taken in formulating the governing equations, and hence the
model is also applicable to other geometrical configurations.
The performance parameter E/Re0 enables a simple assess-
ment of the flow distribution in a given manifold system.

The pressure recovery coefficient has been expressed as
a function of flow velocity. An analytical solution of the
momentum equation with varying mass and varying coef-
ficients was obtained. The solution of varying coefficients
agrees with experimental results. The results can be used to
optimize the design of new flow distributors or to achieve
optimum operating conditions for flow systems. In addi-
tion, the solution can be used for modeling and performance
assessment of operating processes. The solution with con-
stant coefficients is a special case of varying coefficients
when momentum correction is zero and friction correction is
one. In the solution with varying coefficients the static pres-
sure is dependent on geometrical parameters (the ratio of
length and diameter) and flow parameter Re0. In the design
of a new distributor the structure of the distributor can be
optimized.
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